
CSC D70:
Compiler Optimization

Dataflow Analysis-2

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Framework
Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables

Direction forward:
out[b] = fb(in[b])
in[b] = ∧ out[pred(b)]

backward:
in[b] = fb(out[b])
out[b] = ∧ in[succ(b)]

Transfer function fb(x) = Genb ∪ (x –Killb) fb(x) = Useb ∪ (x -Defb)

Meet Operation (∧) ∪ ∪

Boundary Condition out[entry] = ∅ in[exit] = ∅

Initial interior points out[b] = ∅ in[b] = ∅

2

Other examples (e.g., Available expressions), defined in ALSU 9.2.6

Foundations of Data Flow Analysis

1. Meet operator

2. Transfer functions

3. Correctness, Precision, Convergence

4. Efficiency

•Reference: ALSU pp. 613-631
•Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
•Marlowe & Ryder, Properties of data flow frameworks: a unified model.
Rutgers tech report, Apr. 1988

3

A Unified Framework

• Data flow problems are defined by
• Domain of values: V
• Meet operator (V ∧ V → V), initial value
• A set of transfer functions (V → V)

• Usefulness of unified framework
• To answer questions such as

correctness, precision, convergence, speed of convergence
for a family of problems
– If meet operators and transfer functions have properties X, then

we know Y about the above.

• Reuse code

4

Meet Operator
• Properties of the meet operator

• commutative: x ∧ y = y ∧ x

• idempotent: x ∧ x = x
• associative: x ∧ (y ∧ z) = (x ∧ y) ∧ z
• there is a Top element T such that x ∧ T = x

• Meet operator defines a partial ordering on values
• x ≤ y if and only if x ∧ y = x (y -> x in diagram)

– Transitivity: if x ≤ y and y ≤ z then x ≤ z

– Antisymmetry : if x ≤ y and y ≤ x then x = y
– Reflexitivity: x ≤ x

5

x y

x ∧
y

Partial Order
• Example: let V = {x | such that x ⊆ { d1, d2}}, ∧ = ∩

• Top and Bottom elements
• Top T such that: x ∧ T = x
• Bottom ⊥ such that: x ∧ ⊥ = ⊥

• Values and meet operator in a data flow problem define a
semi-lattice:
– there exists a T, but not necessarily a ⊥.

• x, y are ordered: x ≤ y then x ∧ y = x (y -> x in diagram)
• what if x and y are not ordered?

• x ∧ y ≤ x, x ∧ y ≤ y, and if w ≤ x, w ≤ y, then w ≤ x ∧ y

6

One vs. All Variables/Definitions
• Lattice for each variable: e.g. intersection

• Lattice for three variables:

7

1

0

Descending Chain
• Definition

• The height of a lattice is the largest number of > relations that will fit in a
descending chain.

 x0 > x1 > x2 > …

• Height of values in reaching definitions?

• Important property: finite descending chain
• Can an infinite lattice have a finite descending chain?

• Example: Constant Propagation/Folding
• To determine if a variable is a constant

• Data values
• undef, ... -1, 0, 1, 2, ..., not-a-constant

8

Height n – number of definitions

yes

Transfer Functions

• Basic Properties f: V → V
– Has an identity function

• There exists an f such that f (x) = x, for all x.

– Closed under composition
• if f1, f2 ∈ F, then f1 ⋅ f2 ∈ F

9

Monotonicity

• A framework (F, V, ∧) is monotone if and only if
• x ≤ y implies f(x) ≤ f(y)

• i.e. a “smaller or equal” input to the same function will
always give a “smaller or equal” output

• Equivalently, a framework (F, V, ∧) is monotone if and
only if

• f(x ∧ y) ≤ f(x) ∧ f(y)

• i.e. merge input, then apply f is small than or equal to apply
the transfer function individually and then merge the result

10

Example
• Reaching definitions: f(x) = Gen ∪ (x - Kill), ∧ = ∪

– Definition 1:
• x1 ≤ x2, Gen ∪ (x1 - Kill) ≤ Gen ∪ (x2 - Kill)

– Definition 2:
• (Gen ∪ (x1 - Kill)) ∪ (Gen ∪ (x2 - Kill))

= (Gen ∪ ((x1 ∪ x2) - Kill))

• Note: Monotone framework does not mean that f(x) ≤ x
• e.g., reaching definition for two definitions in program
• suppose: fx: Genx = {d1, d2} ; Killx= {}

• If input(second iteration) ≤ input(first iteration)
• result(second iteration) ≤ result(first iteration)

11

Distributivity

• A framework (F, V, ∧) is distributive if and only if
• f(x ∧ y) = f(x) ∧ f(y)

• i.e. merge input, then apply f is equal to apply the transfer function
individually then merge result

• Example: Constant Propagation is NOT distributive

12

 a = 2
 b = 3

 a = 3
 b = 2

 c = a + b

Data Flow Analysis
• Definition

– Let f1, ..., fm : ∈ F, where fi is the transfer function for node i
• fp = fnk ⋅ … ⋅ fn1 , where p is a path through nodes n1, ..., nk
• fp = identify function, if p is an empty path

• Ideal data flow answer:
– For each node n:
 ∧ fpi (T), for all possibly executed paths pi reaching n.

• But determining all possibly executed paths is undecidable

13

 x = 0 x = 1

if sqrt(y) >= 0

Meet-Over-Paths (MOP)
• Error in the conservative direction
• Meet-Over-Paths (MOP):

• For each node n:
 MOP(n) = ∧ fpi (T), for all paths pi reaching n

• a path exists as long there is an edge in the code

• consider more paths than necessary
• MOP = Perfect-Solution ∧ Solution-to-Unexecuted-Paths
• MOP ≤ Perfect-Solution
• Potentially more constrained, solution is small

• hence conservative
• It is not safe to be > Perfect-Solution!

• Desirable solution: as close to MOP as possible

14

MOP Example

15

Solving Data Flow Equations
• Example: Reaching definitions

• out[entry] = {}
• Values = {subsets of definitions}
• Meet operator: ∪

• in[b] = ∪ out[p], for all predecessors p of b
• Transfer functions: out[b] = genb ∪ (in[b] -killb)

• Any solution satisfying equations = Fixed Point Solution (FP)
• Iterative algorithm

• initializes out[b] to {}
• if converges, then it computes Maximum Fixed Point (MFP):

• MFP is the largest of all solutions to equations
• Properties:

• FP ≤ MFP ≤ MOP ≤ Perfect-solution
• FP, MFP are safe
• in(b) ≤ MOP(b)

16

Partial Correctness of Algorithm
• If data flow framework is monotone, then if the algorithm

converges, IN[b] ≤ MOP[b]
• Proof: Induction on path lengths

– Define IN[entry] = OUT[entry]
and transfer function of entry = Identity function

– Base case: path of length 0
• Proper initialization of IN[entry]

– If true for path of length k, pk = (n1, ..., nk), then
true for path of length k+1: pk+1 = (n1, ..., nk+1)
• Assume: IN[nk] ≤ fnk-1(fnk-2(... fn1(IN[entry])))

• IN[nk+1] = OUT[nk] ∧ ...
 ≤ OUT[nk]

 ≤ fnk (IN[nk])
 ≤ fnk-1(fnk-2(... fn1(IN[entry])))

17

Precision

• If data flow framework is distributive,then if the
algorithm converges, IN[b] = MOP[b]

• Monotone but not distributive: behaves as if there
are additional paths

18

 a = 2
 b = 3

 a = 3
 b = 2

 c = a + b

Additional Property to Guarantee Convergence

• Data flow framework (monotone) converges if there
is a finite descending chain

• For each variable IN[b], OUT[b], consider the sequence
of values set to each variable across iterations:

– if sequence for in[b] is monotonically decreasing
• sequence for out[b] is monotonically decreasing

• (out[b] initialized to T)

– if sequence for out[b] is monotonically decreasing
• sequence of in[b] is monotonically decreasing

19

Speed of Convergence
• Speed of convergence depends on order of

node visits

• Reverse “direction” for backward flow
problems

20

Reverse Postorder
• Step 1: depth-first post order

main() {
 count = 1;

 Visit(root);
}
Visit(n) {

 for each successor s that has not been visited
 Visit(s);
 PostOrder(n) = count;
 count = count+1;
}

• Step 2: reverse order
For each node i

 rPostOrder = NumNodes - PostOrder(i)

21

Depth-First Iterative Algorithm
(forward)
input: control flow graph CFG = (N, E, Entry, Exit)
/* Initialize */

 out[entry] = init_value
 For all nodes i
 out[i] = T
 Change = True
/* iterate */

 While Change {
 Change = False
 For each node i in rPostOrder {
 in[i] = ∧(out[p]), for all predecessors p of i
 oldout = out[i]

 out[i] = fi(in[i])
 if oldout ≠ out[i]
 Change = True
 }
 }

22

Speed of Convergence

• If cycles do not add information
• information can flow in one pass down a series of nodes of

increasing order number:
• e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...

• passes determined by number of back edges in the path
• essentially the nesting depth of the graph

• Number of iterations = number of back edges in any acyclic
path + 2
• (2 are necessary even if there are no cycles)

• What is the depth?
– corresponds to depth of intervals for “reducible” graphs
– in real programs: average of 2.75

23

A Check List for Data Flow Problems

• Semi-lattice
– set of values
– meet operator
– top, bottom
– finite descending chain?

• Transfer functions

– function of each basic block
– monotone
– distributive?

• Algorithm

– initialization step (entry/exit, other nodes)
– visit order: rPostOrder
– depth of the graph

24

Conclusions

• Dataflow analysis examples
– Reaching definitions
– Live variables

• Dataflow formation definition
– Meet operator
– Transfer functions
– Correctness, Precision, Convergence
– Efficiency

25

CSC D70:
Compiler Optimization

Loops

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

What is a Loop?
• Goals:

– Define a loop in graph-theoretic terms (control flow graph)
– Not sensitive to input syntax
– A uniform treatment for all loops: DO, while, goto’s

• Not every cycle is a “loop” from an optimization perspective

• Intuitive properties of a loop
– single entry point
– edges must form at least a cycle

27

Is this a
loop?

Is this a
loop?

Formal Definitions
• Dominators

– Node d dominates node n in a graph (d dom n) if every path from
the start node to n goes through d

– Dominators can be organized as a tree
• a ->b in the dominator tree iff a immediately dominates b

28

29

Dominance

1
1

1

5

6 7

8

1
3

2

3

4

9

1
0

1
2

1

1
1

5

6 7 8

2

3

4 9

1
0

1
2

1
3

CFG D-Tree

x strictly dominates w (x sdom w) iff x dom w AND x ≠ w

Natural Loops

• Definitions
– Single entry-point: header

• a header dominates all nodes in the loop

– A back edge is an arc whose head dominates its tail
(tail -> head)
• a back edge must be a part of at least one loop

– The natural loop of a back edge is
the smallest set of nodes that
includes the head and tail of the back edge, and
has no predecessors outside the set,
except for the predecessors of the header.

30

Natural Loops - Example

31

Algorithm to Find Natural Loops

• Find the dominator relations in a flow graph

• Identify the back edges

• Find the natural loop associated with the back edge

32

1. Finding Dominators
• Definition

• Node d dominates node n in a graph (d dom n)
if every path from the start node to n goes through d

• Formulated as MOP problem:
• node d lies on all possible paths reaching node n ⇒ d dom n

– Direction:
– Values:
– Meet operator:
– Top:
– Bottom:
– Boundary condition: start/entry node =
– Initialization for internal nodes
– Finite descending chain?
– Transfer function:

• Speed:
– With reverse postorder, most flow graphs

(reducible flow graphs) converge in 1 pass
33

Example

34

2. Finding Back Edges
• Depth-first spanning tree

• Edges traversed in a depth-first search of the flow graph form a
depth-first spanning tree

• Categorizing edges in graph
• Advancing (A) edges: from ancestor to proper descendant
• Cross (C) edges: from right to left
• Retreating (R) edges: from descendant to ancestor (not necessarily proper)

35

Back Edges

• Definition
– Back edge: t->h, h dominates t

• Relationships between graph edges and back edges

• Algorithm

– Perform a depth first search
– For each retreating edge t->h, check if h is in t’s dominator list

• Most programs (all structured code, and most GOTO
programs) have reducible flow graphs
– retreating edges = back edges

36

Examples

37

3. Constructing Natural Loops
• The natural loop of a back edge is the smallest set of nodes that

includes the head and tail of the back edge, and has no predecessors
outside the set, except for the predecessors of the header.

• Algorithm
• delete h from the flow graph
• find those nodes that can reach t

(those nodes plus h form the natural loop of t -> h)

38

Inner Loops

• If two loops do not have the same header:
– they are either disjoint, or
– one is entirely contained (nested within) the other

• inner loop: one that contains no other loop.

• If two loops share the same header:
– Hard to tell which is the inner loop
– Combine as one

39

Preheader

• Optimizations often require code to be executed
once before the loop

• Create a preheader basic block for every loop

40

Finding Loops: Summary

• Define loops in graph theoretic terms
• Definitions and algorithms for:

– Dominators
– Back edges
– Natural loops

41

CSC D70:
Compiler Optimization
Dataflow-2 and Loops

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Backup Slides

43

44

Dominance Frontier

1
1

1

5

6 7

8

1
3

2

3

4

9

1
0

1
2

CFG D-Tree

The Dominance Frontier of a node x =
{ w | x dom pred(w) AND !(x sdom w)}

1

1
1

5

6 7 8

2

3

4 9

1
0

1
2

1
3

x strictly dominates w (x sdom w) iff x dom w AND x ≠ w

45

Dominance Frontier and Path Convergence

1
1

1

5

6 7

8

1
3

2

3

4

9

1
0

1
2

1
1

1

5

6 7

8

1
3

2

3

4

9

1
0

1
2

